How is open solar magnetic flux lost over the solar cycle?
نویسندگان
چکیده
[1] The Sun’s open magnetic field, magnetic flux dragged out into the heliosphere by the solar wind, varies by approximately a factor of 2 over the solar cycle. We consider the evolution of open solar flux in terms of a source and loss term. Open solar flux creation is likely to proceed at a rate dependent on the rate of photospheric flux emergence, which can be roughly parameterized by sunspot number or coronal mass ejection rate, when available. The open solar flux loss term is more difficult to relate to an observable parameter. The supersonic nature of the solar wind means open solar flux can only be removed by near‐Sun magnetic reconnection between open solar magnetic field lines, be they open or closed heliospheric field lines. In this study we reconstruct open solar flux over the last three solar cycles and demonstrate that the loss term may be related to the degree to which the heliospheric current sheet (HCS) is warped, i.e., locally tilted from the solar rotation direction. This can account for both the large dip in open solar flux at the time of sunspot maximum as well as the asymmetry in open solar flux during the rising and declining phases of the solar cycle. The observed cycle‐to‐cycle variability is also well matched. Following Sheeley et al. (2001), we attribute modulation of open solar flux by the degree of warp of the HCS to the rate at which opposite polarity open solar flux is brought together by differential rotation.
منابع مشابه
The Heliospheric Magnetic Field over the Hale Cycle
The concept that open magnetic flux of the Sun (rooted with one and only one footpoint at the Sun) is a conserved quantity is taking root in the heliospheric community. Observations show that the Sun’s open magnetic flux returns to the baseline from one solar minimum to the next. The temporary enhancement in the 1 AU heliospheric magnetic flux near solar maximum can be accounted for by the temp...
متن کاملRole of coronal mass ejections in the heliospheric Hale cycle
[1] The 11-year solar cycle variation in the heliospheric magnetic field strength can be explained by the temporary buildup of closed flux released by coronal mass ejections (CMEs). If this explanation is correct, and the total open magnetic flux is conserved, then the interplanetary-CME closed flux must eventually open via reconnection with open flux close to the Sun. In this case each CME wil...
متن کاملA New Technique for Mapping Open Magnetic Flux from the Solar Surface into the Heliosphere
The solar wind carries magnetic flux from the photosphere into the heliosphere, making it topologically open in the corona. Open magnetic flux is unevenly distributed at the solar surface, but at some distance in the outer corona it becomes uniformly distributed and approximately radial. Standard potential field models do not provide such uniform distribution of open flux in the heliosphere. A ...
متن کاملSurface flux transport modeling for solar cycles 15–21: effects of cycle-dependent tilt angles of sunspot groups
We model the surface magnetic field and open flux of the Sun from 1913 to 1986 using a surface flux transport model, which includes the observed cycleto-cycle variation of sunspot group tilts. The model reproduces the empirically derived time evolution of the solar open magnetic flux, and the reversal times of the polar fields. We find that both the polar field and the axial dipole moment resul...
متن کاملModeling the Sun’s Magnetic Field and Irradiance since 1713
We use a flux transport model to simulate the evolution of the Sun’s total and open magnetic flux over the last 26 solar cycles (1713–1996). Polar field reversals are maintained by varying the meridional flow speed between 11 and 20 m s , with the poleward-directed surface flow being slower during low-amplitude cycles. If the strengths of the active regions are fixed but their numbers are taken...
متن کامل